3.4.69 \(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\) [369]

3.4.69.1 Optimal result
3.4.69.2 Mathematica [B] (verified)
3.4.69.3 Rubi [A] (verified)
3.4.69.4 Maple [B] (verified)
3.4.69.5 Fricas [F(-1)]
3.4.69.6 Sympy [F(-1)]
3.4.69.7 Maxima [F]
3.4.69.8 Giac [F]
3.4.69.9 Mupad [F(-1)]

3.4.69.1 Optimal result

Integrand size = 33, antiderivative size = 86 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=-\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {2 (A b-a B) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a (a+b) d}+\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}} \]

output
-2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x 
+1/2*c),2^(1/2))/a/d-2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+ 
1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/a/(a+b)/d+2*A*sin( 
d*x+c)/a/d/cos(d*x+c)^(1/2)
 
3.4.69.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(206\) vs. \(2(86)=172\).

Time = 1.68 (sec) , antiderivative size = 206, normalized size of antiderivative = 2.40 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {\frac {2 (-3 A b+2 a B) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}-\frac {2 a A \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )}{b}+\frac {4 A \sin (c+d x)}{\sqrt {\cos (c+d x)}}-\frac {2 A \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b \sqrt {\sin ^2(c+d x)}}}{2 a d} \]

input
Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])),x 
]
 
output
((2*(-3*A*b + 2*a*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) - 
(2*a*A*(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + 
d*x)/2, 2])/(a + b)))/b + (4*A*Sin[c + d*x])/Sqrt[Cos[c + d*x]] - (2*A*(-2 
*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[Arc 
Sin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sq 
rt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b*Sqrt[Sin[c + d*x]^2]))/(2*a*d)
 
3.4.69.3 Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.303, Rules used = {3042, 3479, 27, 3042, 3538, 25, 27, 3042, 3119, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 3479

\(\displaystyle \frac {2 \int -\frac {A b \cos ^2(c+d x)+a A \cos (c+d x)+A b-a B}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}+\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {A b \cos ^2(c+d x)+a A \cos (c+d x)+A b-a B}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {A b \sin \left (c+d x+\frac {\pi }{2}\right )^2+a A \sin \left (c+d x+\frac {\pi }{2}\right )+A b-a B}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {A \int \sqrt {\cos (c+d x)}dx-\frac {\int -\frac {b (A b-a B)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{a}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {b (A b-a B)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}+A \int \sqrt {\cos (c+d x)}dx}{a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {(A b-a B) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx+A \int \sqrt {\cos (c+d x)}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {(A b-a B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx+A \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {(A b-a B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {2 (A b-a B) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{d (a+b)}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}\)

input
Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])),x]
 
output
-(((2*A*EllipticE[(c + d*x)/2, 2])/d + (2*(A*b - a*B)*EllipticPi[(2*b)/(a 
+ b), (c + d*x)/2, 2])/((a + b)*d))/a) + (2*A*Sin[c + d*x])/(a*d*Sqrt[Cos[ 
c + d*x]])
 

3.4.69.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3479
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin 
[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 
1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e 
 + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m + n + 
2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B) 
*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n 
}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Rat 
ionalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(I 
ntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0]) 
))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
3.4.69.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(299\) vs. \(2(136)=272\).

Time = 4.60 (sec) , antiderivative size = 300, normalized size of antiderivative = 3.49

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\frac {2 A \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}-\frac {4 \left (-A b +B a \right ) b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{a \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(300\)

input
int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b),x,method=_RETURNVER 
BOSE)
 
output
-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A/a/sin(1/2* 
d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d 
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x 
+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/ 
2*c),2^(1/2)))-4*(-A*b+B*a)/a/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2 
)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1 
/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/sin(1/2* 
d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.4.69.5 Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\text {Timed out} \]

input
integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm= 
"fricas")
 
output
Timed out
 
3.4.69.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\text {Timed out} \]

input
integrate((A+B*cos(d*x+c))/cos(d*x+c)**(3/2)/(a+b*cos(d*x+c)),x)
 
output
Timed out
 
3.4.69.7 Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm= 
"maxima")
 
output
integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), 
x)
 
3.4.69.8 Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorithm= 
"giac")
 
output
integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*cos(d*x + c)^(3/2)), 
x)
 
3.4.69.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \]

input
int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))),x)
 
output
int((A + B*cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))), x)